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Abstract: A concise and diversity-oriented route to trifluoro-
methylbenzo[b]furans has been devised. A variety of phenols are
directly converted to the corresponding 2-methylthio-3-trifluoro-
methylbenzo[b]furans by new triflic-anhydride-mediated extended
Pummerer annulation reactions with trifluoromethylketene dithio-
acetal monoxide. The methylthio group of the products undergoes
further transformations, which increase the diversity of available
trifluoromethylbenzo[b]furans.

Trifluoromethyl-substituted aromatics display interesting proper-
ties and are widely used in the fields of pharmaceutical, agricultural,
and material sciences.1 However, the synthesis of such compounds
is not trivial because of the unusual chemical behavior of a
trifluoromethyl group. It is hence important to develop new methods
for introducing a trifluoromethyl group into aromatic rings.2

Quite recently, we have developed 2-(2,2,2-trifluoroethylidene)-1,3-
dithiane 1-oxide (1a) as a new trifluoromethylketene equivalent.3 The
reagent exhibited distinct reactivity toward allylsilanes3a and ketones3b

under Pummerer conditions and provided a facile route to difficult-
to-synthesize R-trifluoromethyl carbonyl compounds. We next envi-
sioned that phenols would be good substrates for our extended Pummerer
chemistry,3-5 which would represent a rare example of selective direct
ortho vinylation of phenols6 (vide infra) under mild conditions.

Treatment of a mixture of phenol (2a) and 1a with trifluo-
romethanesulfonic anhydride (Tf2O) in dichloromethane at 0 °C
unexpectedly provided trifluoromethyl-substituted dihydrobenzo[b]-
furan 3 in 77% yield (eq 1), instead of affording the corresponding
o-vinylphenol derivative 4 (Scheme 1). To our surprise, replacement
of 1a with acyclic 1b7 in the extended Pummerer reaction resulted in
the direct and efficient formation of 2-methylthio-3-trifluoromethyl-
benzo[b]furan (5a) (eq 2). Although 3-trifluoromethylbenzo[b]furans
are important in pharmaceutical as well as material sciences, the
precedent synthesis of 3-trifluoromethylbenzo[b]furans required tedious
multistep transformations8 or the use of o-iodophenols9 or 3-bro-
mobenzo[b]furans10 as starting materials.

A plausible mechanism is shown in Scheme 1. After Tf2O
activates 1,11 nucleophilic attack of the phenolic hydroxy group at
the cationic sulfur would take place to yield intermediate 6.
Sulfonium 6 would then undergo rapid [3,3] sigmatropic rearrange-
ment to form a carbon-carbon bond at the ortho position of
phenol. Direct cyclization of 712 or stepwise cyclization via 4
would afford dihydrobenzo[b]furan. When acyclic 1b was used,
elimination of methanethiol occurred in the presence of triflic
acid to yield 5a.

The scope of para-substituted phenols is summarized in Table
1. The reactions of less nucleophilic phenols required a temperature
as high as 40 °C to achieve high efficiency (entries 4-7). In
contrast, p-methoxyphenol proved to be too reactive to be converted
to the corresponding benzo[b]furan (entry 2), and the triflate of
p-methoxyphenol was obtained as the major byproduct. Alterna-
tively, (pinacolato)boryl-substituted phenol reacted to afford 5d
(entry 3), serving as a p-methoxyphenol equivalent.
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Scheme 1. Plausible Mechanism

Table 1. Scope of Para-Substituted Phenols

entry R temp/°C 5 yield /%

1 nBu 0 5b 89
2 OMe -40 5c 0
3 B(pinacolato) 0 5d 64
4 CN 40 5e 73
5 CF3 40 5f 70
6 Br 40 5g 76
7 CO2Et 40 5h 72
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The reaction of m-cresol afforded a 67:33 mixture of regioisomers
in favor of the sterically less demanding isomer 6a (Table 2, entry 1).
tert-Butyl and trifluoromethyl groups are large enough to control the
regioselectivity, and 6b and 6d were exclusively obtained (entries 2
and 4). Since a m-methoxy group has a weaker influence on the reactivity
of the hydroxy group than a p-methoxy group, the reaction of m-
methoxyphenol at -20 °C proceeded to yield 6c in good yield (entry 3).

Although o-cresol reacted smoothly (eq 3), the reaction of 2,6-
dimethylphenol afforded a complex reaction mixture. Naphthols
were good substrates (eqs 4 and 5), and notably, regioselective
cyclization of 2-naphthol took place to furnish 913 in high yield.

The methylthio groups at the 2 positions of the products would
undergo a number of transformations. For instance, palladium-catalyzed
arylation of 5a14 with arylzinc iodide-lithium chloride complexes15

provided 2-aryl-3-trifluoromethylbenzo[b]furans (10a-c) in high yield
(Scheme 2). Oxidation of 5a by mCPBA provided sulfoxide 11. Aryl
sulfoxide 11 underwent efficient sulfoxide-magnesium exchange with
isopropylmagnesium chloride-lithium chloride.16 The benzofurylmag-
nesium was trapped with DMF to yield the formylated product. Thus,
products 5-9 would serve as both 3-trifluoromethylbenzo[b]furyl
cation and anion equivalents.

The optical properties of 10a-c were investigated in methanol
by UV-vis absorption and fluorescence spectroscopy (Table 3).
Compounds 10a-c have similar strong absorbance peaks around
300 nm and exhibit bright blue fluorescence. Especially, ethoxy-
carbonyl-substituted 10b shows the highest fluorescence quantum
yield of 0.54. The synthesis of other fluorescent trifluoromethylated
benzofurans is now under investigation.

In summary, we have found a straightforward synthesis of
3-trifluoromethylbenzo[b]furans from phenols and acyclic 1b with
the aid of Tf2O. A wide range of phenols participate in the
annulation reaction. Further transformations of the methylthio group
of the products will bring diversity to highly substituted trifluo-
romethylbenzo[b]furans.
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