

Published on Web 08/05/2010

Synthesis of 3-Trifluoromethylbenzo[*b*]furans from Phenols via Direct *Ortho* Functionalization by Extended Pummerer Reaction

Takayuki Kobatake,[†] Daishi Fujino,[‡] Suguru Yoshida,[†] Hideki Yorimitsu,^{*,‡} and Koichiro Oshima^{*,†}

Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto-daigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan, and Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan

Received April 9, 2010; E-mail: yori@kuchem.kyoto-u.ac.jp; oshima@orgrxn.mbox.media.kyoto-u.ac.jp

Abstract: A concise and diversity-oriented route to trifluoromethylbenzo[*b*]furans has been devised. A variety of phenols are directly converted to the corresponding 2-methylthio-3-trifluoromethylbenzo[*b*]furans by new triflic-anhydride-mediated extended Pummerer annulation reactions with trifluoromethylketene dithioacetal monoxide. The methylthio group of the products undergoes further transformations, which increase the diversity of available trifluoromethylbenzo[*b*]furans.

Trifluoromethyl-substituted aromatics display interesting properties and are widely used in the fields of pharmaceutical, agricultural, and material sciences.¹ However, the synthesis of such compounds is not trivial because of the unusual chemical behavior of a trifluoromethyl group. It is hence important to develop new methods for introducing a trifluoromethyl group into aromatic rings.²

Quite recently, we have developed 2-(2,2,2-trifluoroethylidene)-1,3dithiane 1-oxide (**1a**) as a new trifluoromethylketene equivalent.³ The reagent exhibited distinct reactivity toward allylsilanes^{3a} and ketones^{3b} under Pummerer conditions and provided a facile route to difficultto-synthesize α -trifluoromethyl carbonyl compounds. We next envisioned that phenols would be good substrates for our extended Pummerer chemistry,³⁻⁵ which would represent a rare example of selective direct *ortho* vinylation of phenols⁶ (vide infra) under mild conditions.

Treatment of a mixture of phenol (2a) and 1a with trifluoromethanesulfonic anhydride (Tf₂O) in dichloromethane at 0 °C unexpectedly provided trifluoromethyl-substituted dihydrobenzo[*b*]furan 3 in 77% yield (eq 1), instead of affording the corresponding *o*-vinylphenol derivative 4 (Scheme 1). To our surprise, replacement of 1a with acyclic 1b⁷ in the extended Pummerer reaction resulted in the direct and efficient formation of 2-methylthio-3-trifluoromethylbenzo[*b*]furan (5a) (eq 2). Although 3-trifluoromethylbenzo[*b*]furans are important in pharmaceutical as well as material sciences, the precedent synthesis of 3-trifluoromethylbenzo[*b*]furans required tedious multistep transformations⁸ or the use of *o*-iodophenols⁹ or 3-bromobenzo[*b*]furans¹⁰ as starting materials.

[†] Department of Material Chemistry.

[‡] Department of Chemistry.

Scheme 1. Plausible Mechanism

A plausible mechanism is shown in Scheme 1. After Tf_2O activates 1,¹¹ nucleophilic attack of the phenolic hydroxy group at the cationic sulfur would take place to yield intermediate 6. Sulfonium 6 would then undergo rapid [3,3] sigmatropic rearrangement to form a carbon–carbon bond at the *ortho* position of phenol. Direct cyclization of 7^{12} or stepwise cyclization via 4 would afford dihydrobenzo[*b*]furan. When acyclic 1b was used, elimination of methanethiol occurred in the presence of triflic acid to yield 5a.

The scope of *para*-substituted phenols is summarized in Table 1. The reactions of less nucleophilic phenols required a temperature as high as 40 °C to achieve high efficiency (entries 4–7). In contrast, *p*-methoxyphenol proved to be too reactive to be converted to the corresponding benzo[*b*]furan (entry 2), and the triflate of *p*-methoxyphenol was obtained as the major byproduct. Alternatively, (pinacolato)boryl-substituted phenol reacted to afford **5d** (entry 3), serving as a *p*-methoxyphenol equivalent.

Table 1. Scope of Para-Substituted Phenols

R	DH \overline{O}_{+}^{+} SMe $\overline{CF_{3}}$ 1b (2 equiv)	2 equiv Tf ₂ O CH ₂ Cl ₂ temp, 30 min	R	5 CF3
entry	R	temp/°C	5	yield /%
1	<i>n</i> Bu	0	5b	89
2	OMe	-40	5c	0
3	B(pinacolato)	0	5d	64
4	CN	40	5e	73
5	CF ₃	40	5f	70
6	Br	40	5g	76
7	CO ₂ Et	40	5h	72

The reaction of *m*-cresol afforded a 67:33 mixture of regioisomers in favor of the sterically less demanding isomer **6a** (Table 2, entry 1). *tert*-Butyl and trifluoromethyl groups are large enough to control the regioselectivity, and **6b** and **6d** were exclusively obtained (entries 2 and 4). Since a *m*-methoxy group has a weaker influence on the reactivity of the hydroxy group than a *p*-methoxy group, the reaction of *m*methoxyphenol at -20 °C proceeded to yield **6c** in good yield (entry 3).

Although *o*-cresol reacted smoothly (eq 3), the reaction of 2,6dimethylphenol afforded a complex reaction mixture. Naphthols were good substrates (eqs 4 and 5), and notably, regioselective cyclization of 2-naphthol took place to furnish 9^{13} in high yield.

The methylthio groups at the 2 positions of the products would undergo a number of transformations. For instance, palladium-catalyzed arylation of $5a^{14}$ with arylzinc iodide-lithium chloride complexes¹⁵ provided 2-aryl-3-trifluoromethylbenzo[*b*]furans (10a-c) in high yield (Scheme 2). Oxidation of 5a by *m*CPBA provided sulfoxide 11. Aryl sulfoxide 11 underwent efficient sulfoxide-magnesium exchange with isopropylmagnesium chloride-lithium chloride.¹⁶ The benzofurylmagnesium was trapped with DMF to yield the formylated product. Thus, products 5–9 would serve as both 3-trifluoromethylbenzo[*b*]furyl cation and anion equivalents.

^{*a*} Conditions: (a) 2.5–10 mol% PdCl₂(dppf), 2–3 equiv of ArZnI·LiCl, MeCN, 60 °C, 1–3 h. (b) 1.2 equiv of *m*CPBA, CH₂Cl₂, 0 °C, 30 min. (c) 2.0 equiv of *i*PrMgCl·LiCl/THF, toluene, -78 °C, 10 min then 2.5 equiv of DMF, -78 to 25 °C, 2 h.

The optical properties of 10a-c were investigated in methanol by UV-vis absorption and fluorescence spectroscopy (Table 3). Compounds 10a-c have similar strong absorbance peaks around 300 nm and exhibit bright blue fluorescence. Especially, ethoxycarbonyl-substituted **10b** shows the highest fluorescence quantum yield of 0.54. The synthesis of other fluorescent trifluoromethylated benzofurans is now under investigation.

Table 3. Optical Properties of 10a-c in	Methanol
---	----------

10	$\lambda_{max} \text{ (nm)}/\varepsilon \text{ (M}^{-1} \cdot \text{cm}^{-1})$	$\lambda_{ m em}$ (nm)	$\Phi_{\rm F}$
10a	$\begin{array}{c} 290/1.9 \times 10^4 \\ 303/2.3 \times 10^4 \\ 298/2.4 \times 10^4 \end{array}$	344, 361	0.28
10b		382	0.54
10c		359	0.29

In summary, we have found a straightforward synthesis of 3-trifluoromethylbenzo[b]furans from phenols and acyclic **1b** with the aid of Tf₂O. A wide range of phenols participate in the annulation reaction. Further transformations of the methylthio group of the products will bring diversity to highly substituted trifluoromethylbenzo[b]furans.

Acknowledgment. This work was supported by Grants-in-Aid for Scientific Research and GCOE Research from JSPS. S.Y. acknowledges JSPS for financial support.

Supporting Information Available: Experimental details and characterization data of products. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (a) Bégué, J.-P.; Bonnet-Delpon, D. Bioorganic and Medicinal Chemistry of Fluorine; Wiley-Interscience: Hoboken, NJ, 2008. (b) Hiyama, T. Organofluorine Compounds: Chemistry and Applications; Springer: Berlin, 2000. (c) Kirsch, P. Modern Fluoroorganic Chemistry; Wiley-VCH: Weinheim, 2004. (d) Uneyama, K. Organofluorine Chemistry; Blackwell: Oxford, 2006.
- (2) (a) Shimizu, M.; Hiyama, T. Angew. Chem., Int. Ed. 2005, 44, 214–231.
 (b) Ma, J.-A.; Cahard, D. J. Fluorine Chem. 2007, 128, 975–996. (c) Grushin, V. V. Acc. Chem. Res. 2010, 43, 160–171. (d) Ball, N. D.; Kampf, J. W.; Sanford, M. S. J. Am. Chem. Soc. 2010, 132, 2878–2879, and references cited therein. (e) Dubinina, G. G.; Furutachi, H.; Vicic, D. A. J. Am. Chem. Soc. 2008, 130, 8600–8601, and references cited therein.
- (3) (a) Yoshida, S.; Yorimitsu, H.; Oshima, K. Org. Lett. 2009, 11, 2185–2188. (b) Kobatake, T.; Yoshida, S.; Yorimitsu, H.; Oshima, K. Angew. Chem., Int. Ed. 2010, 49, 2340–2343.
- (4) Our additional reports: (a) Yoshida, S.; Yorimitsu, H.; Oshima, K. Org. Lett. 2007, 9, 5573–5576. (b) Yoshida, S.; Yorimitsu, H.; Oshima, K. Chem. Lett. 2008, 37, 786–787.
- (5) Reviews about conventional extended Pummerer reactions: (a) Bur, S. K.; Padwa, A. Chem. Rev. 2004, 104, 2401–2432. (b) Padwa, A.; Gunn, D. E., Jr.; Osterhout, M. H. Synthesis 1997, 1353–1377. (c) Carreño, M. C. Chem. Rev. 1995, 95, 1717–1760. (d) Feldman, K. S. Tetrahedron 2006, 62, 5003– 5034. (e) Kita, Y.; Akai, S. Chem. Rec. 2004, 4, 363–372.
- (6) (a) Yamaguchi, M.; Hayashi, A.; Hirama, M. J. Am. Chem. Soc. 1995, 117, 1151–1152. (b) Yamaguchi, M.; Arisawa, M.; Kido, Y.; Hirama, M. Chem. Commun. 1997, 1663–1664. (c) Yamaguchi, M.; Arisawa, M.; Omata, K.; Kabuto, K.; Hirama, M.; Uchimaru, T. J. Org. Chem. 1998, 63, 7298–7305. (d) Kobayashi, K.; Yamaguchi, M. Org. Lett. 2001, 3, 241–242. (e) Casiraghi, G.; Casnati, G.; Puglia, G.; Sartori, G.; Terenghi, G. Synthesis 1977, 122–124.
- (7) A 4/1 mixture of E/Z isomers was used. We confirmed that the reactivities of the two isomers are approximately identical.
- (8) Kaltenbronn, J. S.; Quin, J., III; Reisdorph, B. R.; Klutchko, S.; Reynolds, E. E.; Welch, K. M.; Flynn, M. A.; Doherty, A. M. *Eur. J. Med. Chem.* **1997**, *32*, 425–431, and references cited therein.
- (9) Palladium-catalyzed annulation with trifluoromethylalkynes: (a) Konno, T.; Chae, J.; Ishihara, T.; Yamanaka, H. *Tetrahedron* **2004**, *60*, 11695–11700.
 (b) Jiang, Z.-X.; Qing, F.-L. J. Fluorine Chem. **2003**, *123*, 57–60.
- (10) Copper-mediated trifluoromethylation with trifluoroiodomethane: (a) Kobayashi, Y.; Kumadaki, I. J. Chem. Soc., Perkin Trans. 1 1980, 661–664. (b) Kobayashi, Y.; Kumadaki, I.; Hanzawa, Y. Chem. Pharm. Bull. 1977, 25, 3009–3012.
- (11) The highly electron-withdrawing trifluoromethyl group plays an important role, suppressing the formation of the corresponding dicationic intermediate from the activated 1 by elimination of TfO⁻. Although a methyl or phenyl group could not replace the trifluoromethyl group of 1b, substitution of the trifluoromethyl group with a heptadecafluorooctyl group successfully

- led to the formation of 2-methylthio-3-heptadecafluorooctylbenzo[b]furan (5a') in 85% yield.
 (12) The methylthio group of 1b would be important to precisely control the reactivity of the cationic intermediate 7. Replacing the methylthio group of 1b with a phenyl or methoxyphenyl group, which can stabilize cationic intermediate a cationic intermediate a set barrending 2 methors/benyl barrending a set barrending intermediates, failed to afford the corresponding 2-arylbenzofurans. (13) The structure was determined by X-ray crystallographic analysis as well
- as NMR spectroscopy.
- (14) Pd-catalyzed cross-coupling of reactive N-heteroaryl sulfides with organo-zinc reagent was reported: (a) Koshiba, T.; Miyazaki, T.; Tokuyama, H.;

- Fukuyama, T. *Heterocycles* 2009, 77, 233–239. (b) Angiolelli, M. E. *Synlett* 2000, 905–907.
 (15) Krasovskiy, A.; Malakhov, V.; Gavryushin, A.; Knochel, P. *Angew. Chem., Int. Ed.* 2006, 45, 6040–6044.
 (16) (a) Krasovskiy, A.; Knochel, P. *Angew. Chem., Int. Ed.* 2004, 43, 3333–3336. (b) Rauhut, C. B.; Melzig, L.; Knochel, P. *Org. Lett.* 2008, 10, 3891–3894. (c) Melzig, L.; Rauhut, C. B.; Knochel, P. *Chem. Commun.* 2009, 3536–3538. 3536-3538.

JA1030134